Microbial Inputs in Coffee (Coffea arabica L.) Production Systems, Southwestern Ethiopia Implications for Promotion of Biofertilizers and Biocontrol Agents

نویسنده

  • Diriba Muleta
چکیده

Arabica coffee is the key cash crop and top mainstay of the Ethiopian economy and requires sustainable production methods. Southwestern natural forests, the site of this study, are believed to be the centre of origin and diversity for Coffea arabica and still harbour wild Arabica coffee that may serve as an important gene pool for future breeding. Cost reductions, sustainability and quality improvement are now the major priorities in coffee production systems and require organic growing of coffee. Current developments in sustainability involve rational exploitation of soil microbial activities that positively affect plant growth and this study examines this possibility. The composition of coffee shade tree species and density of arbuscular mycorrhizal fungi (AMF) spores and coffee-associated rhizobacteria in different coffee production systems in southwestern Ethiopia were investigated. The main objectives were to: 1) systematically identify the dominant coffee shade tree species; 2) quantify and characterize AMF populations with respect to spatial distribution; 3) screen for beneficial rhizobacteria (microbial biofertilizers and biocontrol agents), particularly in the rhizosphere of coffee plants; and 4) characterize rhizobacterial isolates of particular interest using molecular tools (polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis and 16S rDNA gene sequencing). Sampling and determination of microbial functional characteristics followed standard methods. Nineteen dominant shade tree species belonging to 14 plant families were identified, with the tree legume (Millettia ferruginea) dominating. All soil samples contained AMF spores and members of the Glomeromycota, Glomus spp. dominating. AMF spore density was affected by sampling point, site, depth, shade tree species and shade tree/coffee plant age. Coffee-associated rhizobacterial isolates showed multiple beneficial traits (phosphate solubilization, production of organic acids, siderophores, indoleacetic acid, hydrogen cyanide, lytic enzymes and degradation of an ethylene precursor). Many isolates also revealed a potent inhibitory effect against emerging fungal coffee pathogens such as Fusarium xylarioides, F. stilboides and F. oxysporum. According to in vitro studies Bacillus, Erwinia, Ochrobactrum, Pseudomonas, and Serratia spp. were the most important isolates to act as potential biofertilizers, biocontrol agents or both. Thus, these indigenous isolates deserve particular attention and further greenhouse and field trials could ascertain their future applicability for inoculum development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rhizosphere of Coffea Arabica in Its Native Highland Forests of Ethiopia Provides a Niche for a Distinguished Diversity of Trichoderma

The southwestern highlands forests of Ethiopia are the origin of the coffee plant Coffea arabica. The production of coffee in this area is affected by tracheomycosis caused by a soil-born fungus Gibberella xylarioides. The use of endemic antagonistic strains of mycoparasitic Trichoderma species would be a nature conserving means to combat this disease. We have used molecular methods to reveal t...

متن کامل

Coffea arabica yields decline in Tanzania due to climate change: Global implications

Coffee is the world’s most valuable tropical export crop. Recent studies predict severe climate change impacts on Coffea arabica (C. arabica) production. However, quantitative production figures are necessary to provide coffee stakeholders and policy makers with evidence to justify immediate action. Using data from the northern Tanzanian highlands, we demonstrate for the first time that increas...

متن کامل

Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change

Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. W...

متن کامل

The Microeconomics of Household Collection of Wild Coffee in Ethiopia: Some Policy Implications for In-situ Conservation of Coffea arabica Genetic Diversity

World-wide cultivated arabica coffee is a native plant to Ethiopian highlands. Its wild populations can still be found in the fragmented montane rainforests of the country. To halt degradation and loss of the forest coffee genetic resources, the Ethiopian Government has established in-situ conservation areas in the south and southwestern montane rain forest regions of the country. However, ther...

متن کامل

Wild coffee production in Ethiopia: the role of coffee certification for forest conservation 1 Introduction

The Ethiopian rainforests are internationally renowned for their high biodiversity and their wild coffee (Coffea arabica) populations, but are severely threatened by deforestation. The remaining rainforests are used for wild coffee production. This study quantifies wild coffee yields from local management systems without artificial inputs, and analyses the impact of wild coffee management on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007